اتلاف وقت، گران بهاترین خرج هاست

 
ریاضی - پدیده های تصادفی و احتمال

نظریهٔ احتمالات مطالعهٔ رویدادهای احتمالی از دیدگاه ریاضیات است. بعبارت دیگر، نظریه احتمالات به شاخه‌ای از ریاضیات گویند که با تحلیل وقایع تصادفی سروکار دارد.[۱] هسته تئوری احتمالات را متغیر‌های تصادفی و فرآیندهای تصادفی و پیشامدها تشکیل می‌دهند.تئوری احتمالات علاوه بر توضیح پدیده‌های تصادفی به بررسی پدیده‌هایی می‌پردازد که لزوما تصادفی نیستند ولی با تکرار زیاد دفعات آزمایش نتایج از الگویی مشخص پیروی می‌کنند، مثلاً در آزمایش پرتاب سکه یا تاس با تکرار آزمایش می‌توانیم احتمال وقوع پدیده‌های مختلف را حدس بزنیم و مورد بررسی قرار دهیم. نتیجه بررسی این الگو‌ها قانون اعداد بزرگ و قضیه حد مرکزی است . [۲]

پیشینه

نخستین کتاب‌ها را دو دانشمند ایتالیایی درباره بازی با تاس نوشتند: جه رولاموکاردان و گالیلئو گالیله. بااین همه باید آغاز بحث دقیق درباره احتمال را سده هفدهم و با کارهای بلز پاسکال و پی‌یر فرما، ریاضیدانان فرانسوی و کریستین هویگنس هلندی دانست. پاسکال و فرما کتابی در این باره ننوشتند و تنها در نامه‌های خود به دیگران درباره کاربرد آنالیز ترکیبی در مساله‌های مربوط به شانس صحبت کرده‌اند، ولی هویگنس کتابی با نام بازی با تاس نوشت که اگر چه با کتاب کاردان هم نام است ولی از نظر تحلیل علمی در سطح بسیار بالاتری است. کار آنان توسط یاکوب برنولی و دموآور در قرن هجدهم میلادی ادامه یافت، برنولی کتاب روش حدس زدن را نوشت و قانون عددهای بزرگ را کشف کرد.مساله معروف سوزن نیز در اواسط همین قرن توسط کنت دو بوفون مطرح و حل شد.در سده هجدهم و ابتدای سده نوزدهم نظریه احتمال در دانش‌های طبیعی و صنعت به طور جدی کاربرد پیدا کرد.در این دوره نخستین قضیه‌های نظریه احتمال یعنی قضایای لاپلاس، پواسون، لژاندر و گاوس ثابت شد. در نیمه دوم سده نوزدهم دانشمندان روسی تاثیر زیادی در پیشرفت نظریه احتمال داشتند، چبیشف و شاگردانش، لیاپونوف و مارکوف یک رشته از مساله‌های کلی نظریه احتمال را حل کردند و قضایای برنولی و لاپلاس را تعمیم دادند. در آغاز قرن بیستم متخصصان کارهای قبلی را منظم نموده و ساختمان اصول موضوعه احتمال را بنا نمودند.در این دوره دانشمندان زیادی روی نظریه احتمال کار کردند : در فرانسه، بورل، له‌وی و فره‌شه؛ در آلمان، میزس؛ در آمریکا، وینر، فه لر و دوب؛ در سوئد، کرامر؛ در شوروی، خین چین، سلوتسکی، رومانوسکی، سمپرنوف، گنه دنکو اما درخشان‌ترین نام در این عرصه کولموگروف روسی است که اصول موضوع احتمال را در کتابی به نام مبانی تئوری احتمال در آلمان منتشر کرد.

مفهوم

مفهوم احتمال در مورد ارتباط یا پیوند دو متغیر به کار می‌رود، به این معنی که ارتباط یا پیوند آنها به صورتی است که حضور، شکل، وسعت و اهمیت هر یک وابسته به حضور، شکل، و اهمیت دیگری است. این مفهوم به صورت محدودتر و در مورد ارتباط دو متغیر کمّی نیز به‌کار برده می‌شود.[۳]

ریاضی‌دانان عددی بین صفر و یک را به عنوان احتمال یک رویداد تصادفی به آن نسبت می‌دهند. رویدادی که حتماً رخ دهد، احتمالش یک است و رویدادی که احتمالش صفر است، در واقع احتمال وقوع ندارد. باید توجه داشت که در تعریف دقیق ریاضی، میان احتمال و امکان تفاوت می‌گذارند. یعنی احتمال وقوع یک امر ممکن می‌تواند صفر باشد. مثلاً احتمال اینکه طول یک پاره‌خط دقیقاً ۳٫۱ سانتیمتر باشد (اندازه‌گیری شده با هر ابزاری با هر میزان دقت) صفر است. چون بین ۳٫۲ و ۳٫۰ بی‌نهایت عدد وجود دارد ولی از لحاظ منطقی ممکن است که طول پاره‌خطی ۳٫۱ سانتیمتر باشد.. احتمال شیر آوردن در پرتاب یک سکه سالم \frac {1} {2} است، همانطور که احتمال خط آوردن هم \frac {1} {2} است. احتمال این‌که پس از انداختن یک تاس سالم شش بیاوریم \frac {1} {6} است.

به زبان سادهٔ ریاضی احتمال، نسبت تعداد اعضای مجموعهٔ پیشامدهای دلخواه به تعداد اعضای مجموعهٔ تمام پیشامدهای ممکن است. مثلاً در مورد تاس، برای محاسبهٔ احتمال آوردن عددی زوج، مجموعهٔ پیشامدهای ممکن هست: {۱٫۲٫۳٫۴٫۵٫۶} و مجموعهٔ پیشامدهای دلخواه هست: {۲٫۴٫۶}. تعداد اعضای مجموعهٔ دلخواه هست ۳ و تعداد اعضای مجموعهٔ پیشامدهای ممکن هست ۶. پس احتمال هست:  \frac {3}{6}=0.5

جمع احتمال رخ دادن یک رویداد با احتمال رخ دادن رویداد مکمل آن، عدد یک می‌شود. مثلاً در تاس ریختن جمع «احتمال آوردن شش» (که \frac {1} {6} است) با «احتمال نیاوردن شش» (که \frac {5} {6} است) می‌شود یک.

آزمایش تصادفی

به آزمایشی گفته می‌شود که نتیجه آن قبل از انجام آزمایش مشخص نیست . [۴]

فضای نمونه

به مجموعه‌ای از تمام نتایج ممکن در یک آزمایش تصادفی فضای نمونه می‌گویند .[۵]

نويسنده : امیر رضا هاشمی